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Inferentialism and Wittgenstein on linguistic use
Semantics is not given by the denotation of a linguistic entity, but by its
(correct) use in the language

The meaning of a word is its use in the language (Philosophical Investigations,
¤43)

Cosequences Þx the interpretation by making intentionality explicit

By ÒintentionÓ I mean here what uses a sign in a thought. The intention seems to
interpret, to give the Þnal interpretation; which is not a further sign or picture,
but something else ? the thing that cannot be further interpreted. But what we
have reached is a psychological, not a logical terminus. (Philosophical Grammar,
Part I, ¤98)

What are you telling me when you use the words . . .? What can I dowith this
utterance? What consequences does it have? (Last Writings I, ¤624)
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Dummett and Prawitz on linguistic use

Crudely expressed, there are always two aspects of the use ofa given form of
sentence: the conditions under which an utterance of that sentence is appropriate,
which include, in the case of an assertoric sentence, what counts as an acceptable
ground for asserting it; and the consequences of an utterance of it, which
comprise both what the speaker commits himself to by the utterance and the
appropriate response on the part of the hearer, including, in the case of assertion,
what he is entitled to infer from it if he accepts it (Dummett 1973)

I shall [...] review some approaches to meaning that are based on how we use
sentences in proofs. One advantage of such an approach is that from the
beginning meaning is connected with aspects of linguistic use. (Prawitz 2006)
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Logical inferentialism
Key ideas

Semantics is not given by the denotation of a linguistic entity, but by its
(correct) use in the language: in logic and formal systems this corresponds to
assigning a semantic r™le to the deductive and proof-theoretic aspects.
The meaning of logical constants is determined by theinferential rulesthat
govern their use.

A problem(Prior 1960)

tonk connective shows that some constraints are needed in order to deÞne
correctly the meaning of logical constants.

Ax
A ! A

tonk -intro 1

A ! A tonk B
tonk -elim2

A ! B
! -intro

! A " B

Ax
B ! B

tonk -intro 2

B ! A tonk B
tonk -elim1

B ! A
! -intro

! B " A
" -intro

! (A " B) # (B " A)

! A $ B
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Logical inferentialism
A solution (Dummett 1973)

The conditions under which a given logical constant can be asserted should
be in harmony with the consequences one can draw from the same logical
constant.

! Which set of rules has semantic priority ?

1) Intro-rules (Gentzen/Prawitz/Tennant)
2) Elim-rules (Martin-Lšf[1970]/Schroeder-Heister[1985]/Dummett[1991])
3) Either intro OR elim-rules (Milne/RumÞtt)
4) The set of all rules (Brandom)

! From a formal point of view, harmony has been presented in di!erent ways

1) conservativeness (Belnap/Kremer)
2) normalization:

2a) inversion principle (Prawitz)
2b) general inversion principle (Negri/von Plato)

3) Deductive equilibrium (Tennant)
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Logical inferentialism
A solution (Dummett 1973)

The conditions under which a given logical constant can be asserted should
be in harmony with the consequences one can draw from the same logical
constant.

We focus on the formalization of harmony asnormalization, that correspond
to the so-calledPrawitzÕs inversion principle(Prawitz 1973):

The elimination rules for a certain connective can never allow to deduce more
than what follows from the direct grounds of its introduction rules.

Such a condition banstonk

D
! ! A

tonk -intro
! ! A tonk B

tonk -elim
! ! B

! ?

It is impossible to deÞne a normalization strategy.
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A problem withharmony-as-normalization: modesty

The condition ofharmony-as-normalizationdoes not ban all Òtonkish"
connectives: Çharmony is an excessively modest demandÈ
(Dummett 1991, p. 287).

Let us add a new logical connective (! ) to NJ through the following rules:

! ! A ! ! ! B
! -intro

! , ! ! ! A ! B
! ! A ! B ! ! ! A

! -elim
! , ! ! ! B

These rules enjoy a normalization strategy:

D
! ! A

D1

! ! ! B
! -intro

! , ! ! ! A ! B
D2

! !! ! A
! -elim

! , ! ! , ! !! ! B

! D!
1

! , ! ! , ! !! ! B

Where D!
1 is obtained byD1 by adjunction of ! and ! !! in the axioms.

A. Naibo, M. Petrolo, T. Seiller (Paris1, Paris7, IML) LOCI January 21, 2011 9 / 48



A problem withharmony-as-normalization: modesty

The ! -connective does not enjoy the property ofdeducibility of identicals
(Hacking 1979), i.e. it is not possible to proveA ! B starting from the only
assumptionA ! B with a non-trivial proof.

Note that such a condition holds for other connectives, e.g.
Ax

A ! B # A ! B
Ax

A # A
! -elim

A ! B, A # B
! -intro

A ! B # A ! B

Ax
A " B # A " B

" -elim1
A " B # A

Ax
A " B # A " B

" -elim2
A " B # B

" -intro
A " B # A " B

This procedure fails for! :

Ax
A ! B ! A ! B

Ax
A ! A

! -elim
A ! B, A ! B

?

A. Naibo, M. Petrolo, T. Seiller (Paris1, Paris7, IML) LOCI January 21, 2011 10 / 48



A problem withharmony-as-normalization: modesty

In the Sequent Calculus setting, this property of deducibility of identicals
corresponds to the so-called atomic Ôaxiom-expansionÕ procedure. Again, for
" we have:

Ax
A ! A

Ax
B ! B ! L

A " B, A ! B
! R

A " B ! A " B

The absence of this property for! indicates that the meaning of a connective
is not only given by right and left rules but also by the axiom of the form A !
B ! A ! B.

Indeed, the meaning of! is not only given by its use (inferential rules) but
also by some extra stipulation.

A. Naibo, M. Petrolo, T. Seiller (Paris1, Paris7, IML) LOCI January 21, 2011 11 / 48



A problem withharmony-as-normalization: double-dealing

PrawitzÕs inversion principle plays a double r™le:
1. It is a meaning-condition: if (the deÞnition of) a connectivedoes not satisfy it,

then it is not meaningful;
2. It is a su"cient condition for being a logical constant: if a connective does not

satisfy normalization, then it is not a logical constant.

The risk is to identify two questions:
1) What counts as the meaning of a linguistic connective;
2) What counts as a logical constant.

Not being a logical constant should not imply the fact of not being
meaningful at all: it seems to be reasonable to have meaningful connectives
that are not logical constants.
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A possible solution

We claim that the questions 1) and 2) belong to di!erent domains of analysis.

In particular, our proposal is that the analysis of what counts as a logical
constant can be performed on a di!erent level other the linguistic one,
namely thecomputationalone.

We will show that the both the inversion principle and the deducibility of
identicals can be interpreted as a computational properties.

This guarantees the possibility of (partially) founding logical properties over
computational ones: the lack of computational properties is su"cient for
ruling out what is not logical.

In order to develop our proposal we have to Þnd a suitable setting for
analyzing the notion of computation. A reasonable one seemsto be
! -calculus.
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Curry-Howard isomorphism

! -terms t are considered as programs; a type judgementt : A is a program
equipped with a speciÞcation that describes its behavior.

The " -reduction corresponds to the execution of a programt , when applied
to an argumentu; the reduction shows howt computes.

The Curry-Howard isomorphism establishes a one-to-one correspondance
between Natural Deduction and! -calculus, e.g.

! , x : A # t : B
! -intro

! # ! x.t : A ! B ! ! # u : A
! -elim

! , ! ! # (! x.t )u : B

! ! , ! ! # t [u / x ] : B

! # t : A ! ! # u : B
" -intro

! , ! ! # $t , u%: A " B
" -elim

! , ! ! # " 1($t , u%) : A

! ! # t : A

Indeed,normalizationin NJ corresponds to" -reduction in! -calculus.
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! -expansion

In ! -calculus the main objects are programs, which areintensional objects:
even if two programs compute the same mathematical functions, usually they
are not considered as identical (e.g. one can be more e"cientthan the other).

This means that there exist two termst and t &, (t )u %# (t &)u for all termsu,
but not t %# t &.

In order to work in the usual extensional setting, the following rules
(#-expansion) are needed:

t "# ! ! x(t )x

(with x /' FV (t ))

t "# ! $" 1(t ), " 2(t )%

The relation of#-expansion is type-preserving.
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! -expansion and deducibility of identicals

#-expansion corresponds exactly to the property of deducibility of identicals:

Ax
t : A " B ! t : A " B

Ax
x : A ! x : A

! -elim
t : A " B, x : A ! (t )x : B

! -intro
t : A " B ! ! x(t )x : A " B

Ax
t : A # B ! t : A # B

" -elim1
t : A # B ! " 1(t ) : A

Ax
t : A # B ! t : A # B

" -elim2
t : A # B ! " 2(t ) : B

" -intro
t : A # B ! $ " 1(t ), " 2(t )%: A # B
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Extensionality in" -calculus

We can deÞne"# -equivalence (%#$ ) as the smallest equivalence relation
containing&' # and &' $ .

Extensionality : If t and t & are such that(t )u %#$ (t &)u for all termsu, then
t %#$ t &

Can we add some other type-preserving relation on! -terms?
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Maximality of%"#
The answer is no. It is a consequence ofBšhmÕs Theorem.

Theorem 1 (Bšhm)
Let s and t be closed normal! -terms that are not"# -equivalent. Then there exist
closed terms u1...uk such that
(s)u1...uk = ! xy.y
(t )u1...uk = ! xy.x

This means thats and t can be distinguished by their computational
behaviour.

Corollary 1
Let %% be an equivalence relation on! , containing%# , and such that it is
! -compatible. If there exist two normalizable non"# -equivalent terms t, t& such
that t %% t &, then v %% v& for all terms v, v&.

The adjunction of another equivalence relation on! -terms, forces the
collapse of the whole set of normal! -terms.
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Let %% be an equivalence relation on! , containing%# , and such that it is
! -compatible. If there exist two normalizable non"# -equivalent terms t, t& such
that t %% t &, then v %% v& for all terms v, v&.

The corollary suggests to take"# -equivalence as a su"cient condition for being a
logical constant.
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Comparisons with other conditions (1)

A comparison with BelnapÕs criterion

#-expansion is more ÒliberalÓ than the requirement ofunicity (Belnap 1961).

For example, the S4! operator satisÞes#-expansion, while it does not
satisÞes unicity:

#-expansion Unicity

Ax
! A ! ! A

! -elim
! A ! A

! -intro
! A ! ! A

Given two operators,! and! ( , governed
by the same rules, we canÕt prove! A (!
! ( A:

Ax
! A ! ! A

! -elim
! A ! A

?

Ax
! ( A ! ! ( A

! " -elim
! ( A ! A

?

Therefore BelnapÕs criterion removes S4! out of the domain of logical
constants, while#-expansion does not.
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Comparisons with other conditions (2)
A comparison with the general elimination principle

Consider the quantum disjunction operator:

! ! A ! -intro 1
! ! A ! B

! ! B ! -intro 2
! ! A ! B

! ! A ! B A ! C B ! C
! -elim

! ! C

(Where the arbitrary context of the two minor premisses of! -elim must be empty)

#-expansion condition does not rule out! :

Ax
A ! B ! A ! B

Ax
A ! A ! -intro 1

A ! A ! B

Ax
B ! B ! -intro 2

B ! A ! B
! -elim

A ! B ! A ! B

On the other hand, given the introduction rules for! , the general inversion
principle, without the support of any further condition, Ògenerates" theusual
rule for disjunction elimination and not the! -elim rule.

The problem concerns how to impose a control on contexts.
A. Naibo, M. Petrolo, T. Seiller (Paris1, Paris7, IML) LOCI January 21, 2011 21 / 48



Problems

Even if we started from computational considerations, thenour analysis has
been performed only at the linguistic (i.e. of types) level.

In this manner we risk to persist in the confusion between themeaning-level
and the logicality-level.

Our problem can be rephrased in the following manner: how canbe deÞned
an operator in purely! -terms, without passing through types in advance?

! -calculus is a syntactical framework. In order to consider more
constructions, we need to extend our deÞnitions of objects and (therefore) of
reduction which in this case cannot be considered as primitive.

If we want to move away from the linguistic level and fully develop the idea
that logical constants coincide with those operators that have a particular
type of computational behavior, we have then to choose a di!erent setting.

We want to work in a framework where reduction is deÞned as a primitive,
and where the distinction between logical and non logical constructions on
types can be made based on reduction.
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Overview

The computational level is taken as primitive.

The leading idea is that the basic computational properties(of programs) are:
1. Composition / Execution;
2. Termination.

Given a sets of ÒobjectsÓ (mathematical objects), a notion of execution and a
notion of termination allows one to construct types, as in lambda-calculus
(realisability).
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Construction

framework execution termination
lambda-calculus " -reduction (strong) normalizability

permutations paths no "internal cycles"
ludics normalization daimon
GoI execution ) = { 0 á+ á1 + 0} )

From the notions of execution and termination, we can deÞne anotion of
orthogonality.

From this notion of orthogonality, we can deÞnetypesas sets of objectsT
such that there exists a setS with T = S) .

Remark 1
We usually rephrase the deÞnition of a type by saying that a type is a set of
objectsT such thatT )) = T , a statement that is equivalent to the other one.

Remark 2
This allows an object to have multiple types.
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MLL sequent calculus

Ax
! A, A)

! " , A ! A) , #
Cut

! " , #

! " , A ! #, B
*

! " , #, A * B
! " , A, B

`
! " , A ` B
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Proof Structures

DeÞnition 1
A proof structure for MLL is a graph constructed using the following nodes.

Ax

cut

Figure: Liens axiomes et coupures
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Proof Structures

DeÞnition 1
A proof structure for MLL is a graph constructed using the following nodes.

`

A ` B

*

A * B

Figure: Liens ` et &
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Non sequentialisable proofs

Remark 3
Proof structures do not always correspond to a sequent calculus proof.

Ax Ax

* *

Figure: An example of a non sequentialisable proof

Remark 4
The key point here is the possibility of writing things that are not proofs (as in the
syntactic proof of completeness for LK, it gives the syntax asemantical ßavour),
but we will be able to distinguish the "real" proofs.
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Correctness criterions

In order to distinguish sequentialisable proof structures, we usecorrectness
criterions: Long trips (LT), Danos-Regnier (DR), counter-proofs (CP), etc.
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Correctness criterions

In order to distinguish sequentialisable proof structures, we usecorrectness
criterions: Long trips (LT), Danos-Regnier (DR), counter-proofs (CP), etc.
Correctness criterion have the same global structure. LetR be a proof structure:

We deÞne a familyT of objectsR: trips (LT), graphs (DR), partitions of a
set (CP);

We show thatR is sequentialisable if and only if each element ofT satisfy a
given propertyP : being a long-trip (LT), being connected and acyclic (DR),
etc.
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Correctness criterions
Looking into the criterions a little further, one can noticethat:

the elements ofT are deÞned only by thelogical partof the proof structure,
i.e. the structure without its axiom links;
the propertyP is then a condition on how the axioms interact with thetests
in T .

Slogan 1
Set of axioms = An untyped proof

Set of testsT = Logical part = Type
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Correctness criterions
Looking into the criterions a little further, one can noticethat:

the elements ofT are deÞned only by thelogical partof the proof structure,
i.e. the structure without its axiom links;
the propertyP is then a condition on how the axioms interact with thetests
in T .

Slogan 1
Set of axioms = An untyped proof

Set of testsT = Logical part = Type

One criterion is particularly interesting, since elementsof T and the axiom part both
yield permutations. This homogeneity allows us to take one step further: consider
elements ofT as a kind of proofs (incorrect proofs).
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A toy example: permutations

We will show on a simple example how one constructs such a framework.

DeÞnition 2 (Untyped proof)
An untyped proofis a paira = +X, $, , where:

1. X - %f (N) \ {.} is called thelocation of a;

2. $ is a permutation on X.

A. Naibo, M. Petrolo, T. Seiller (Paris1, Paris7, IML) LOCI January 21, 2011 31 / 48



Composition

LetÕs consider two untyped proofs.

For exemple,a = +{1, 2, 3, 4} , (1, 2, 4, 3), and b = +{1, 2} , id, :

1 2 3 4 1 2
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Composition

Their composition is obtained by plugging them together:

1 2 3 4

This operation is analogue to the application of a program toanother.

There is a correspondence with the operation of applicationin pure
! -calculus.
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Execution

The execution of this application gives as a result:

1 2 3 4
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Execution

The execution of this application gives as a result:

3 4
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Execution

The execution of this application gives as a result:

3 4

Execution corresponds to" -reduction in! -calculus.
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Internal Cycles and termination

Sometimes the composition of untyped proofs can generate ÒinternalÓ cycles
(loops).

For instance, leta = +{1, 2, 3, 4} , (1, 2, 4, 3), and b&= +{1, 2} , (1, 2), :

1 2 3 4 1 2
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Internal cycles and termination

The execution of the application yields:

1 2 3 4
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Internal cycles and termination

The execution of the application yields:

1 2 3 4

This means that the computation (execution) does not terminate.
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Internal cycles and termination

The execution of the application yields:

1 2 3 4

The presence of internal cycles means that the computation does not
terminate.

There is an analogy with non-terminating reductions of pure! -terms, e.g.
(! x(x)x)! x(x)x.
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Application of untyped proofs

The genuine application of two untyped proofs can be stated in the following
way:

DeÞnition 3 (Application)

Let bea = +X / Y , $, and b = +Y , &, , with X 0 Y = . and let ' X be the partial
identity on X.
The application ofa to b is deÞned when no internal cycles appear and it is then
deÞned as:

[a]b = +X, $   &,

where
$   & = ' X ($ / $&$/ $&$&$ . . .)' X
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Orthogonality

DeÞnition 4 (Orthogonality)
Two untyped proofsa = +X, $, and b = +X, &, are orthogonalif and only if $& is
a cyclic permutation.

This intuitively means that a programa is tested (ÒconfrontedÓ) with another
oneb and that b is ÒacceptedÓ bya and vice versa(i.e. a pass the test ofb
and b pass the test ofa).

Note that the condition for the orthogonality of two untypedproofs
represents a special case of a terminating execution (this is more obvious in
Ludics or GoI).
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From untyped proofs to types

DeÞnition 5
A type is a set of untyped proofs T such that there exists a set Sof untyped
proofs with T = SÜ = { $ | $Ü&,1& - S} .

We already pointed out that it s equivalent to:

DeÞnition 6 (Type)

A subsetA of S (X) equal to its bi-orthogonalAÜÜ is called atype (of carrier X).

Intuitively, this means that if two untyped proofs are in thesame type, they
somewhat behave in the same way (since they both pass a given set of tests).
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Logical operations (1)

In this setting we can deÞne multiplicative connectives of linear logic.

Let a = +X, $, and b = +Y , &, , whereX 0 Y = . . We can deÞne thetensor
product of a and b by:

a " b = +X / Y , $ / &,

Let A and B two types of respective carriersX and Y , whereX 0 Y = . . We
deÞne the typeA " B of carrierX / Y by:

A " B = { a " b | a - A and b - B} ÜÜ

The operator" satisÞes the following properties:
! A " B = B " A (Commutativity)
! A " (B " C) = ( A " B) " C (Associativity)
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Logical operations (2)

Let beA and B two types and consider the set

A " B = { f | 1a - A, [f]a - B}

Theorem 2
The following equivalence holds:A " B = ( A " BÜ )Ü .

Corollary 2
The setA " B is a type.
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Truth

In such frameworks, we can deÞne a notion of correct proofs and truth.

DeÞnition 7
An untyped proof+X, $, is correct when it is a disjoint union of transpositions, i.e.
when$2 = Id and$(x) 2= x for all x - X.

DeÞnition 8
A type is true when it contains a correct proof.

Proposition 1
Truth is preserved by the* operation and application (execution).

A. Naibo, M. Petrolo, T. Seiller (Paris1, Paris7, IML) LOCI January 21, 2011 42 / 48



Logical and non-logical operations

Every operation on untyped proofs allows one to deÞne an operation on
types. For instance, ifg(x, y) deÞnes an untyped proofs from two untyped
proofsx and y, we deÞne the operation on types

g(A, B) = { g(x, y) : x - A, y - B} ))

Given a type it is also always possible to deÞne its dual at thelevel of types.
However, this dual cannot always be expressed through an operation over
untyped proofs.

An operation on types will be a logical constant when both it and its dual have a
computational meaning, i.e. when they are deÞned as a "natural" construction on
untyped proofs.

For instance, in the permutations framework a natural construction on
untyped proofs can be deÞned as a construction that preserves inclusions
and/or correctness.
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Non-logical operations: An example

LetÕs take an untyped proofa = +X, $, and deÞne the operation ofsquare
exponentiation:

a2 = +X, $2,

Given a typeA, the square operation over untyped proofs induces the new
type:

# A = { a2 | a - A} ÜÜ

We now take a look at some examples:

The setsF2 = {+{ 1, 2} , id,} and F3 = {+{ 1, 2, 3} , id,} are types.

We have
C2 = {+{ 1, 2} , (1, 2),} = FÜ

2

C3 = {+{ 1, 2, 3} , (1, 2, 3), , +{1, 2, 3} , (1, 3, 2),} = FÜ
3

These equalities are satisÞed:# F2 = F2, # C2 = F2, # F3 = F3, # C3 = C3,
hence(# C2)Ü = C2 and (# C3)Ü = F3
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Advantages of these frameworks

The framework is rich enough: each operation on untyped proofs deÞnes an
operation on types and there already exists many propertiesof untyped
proofs and types that could be used to distinguish between logical and non
logical operations on types, for instance:

! the preservation of correctness;
! the "naturality", i.e. the preservation of inclusion in case of permutations;
! internal completeness (i.e. the closure by bi-orthogonality is not necessary);
! ...

The notion of execution needs not be adapted when a new construction is
introduced, as opposed to what happens when one works with lamda-calculus.
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By way of conclusion (1)

In the Þrst two parts we have analyzed a series of principles that give
su"cient conditions for being a logical constant.

A linguistic operator (i.e. an operator applied over types)is ruled out of the
domain of logical constants if it does not respect those principles.

Instead, by taking as primitive the operations over untypedobjects what we
get is a condition for allowing an operator toenter into the domain of the
logical constants.

What about inferentialism?

Strictly speaking, our computational untyped setting cannot be considered as
an inferentialist account.
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By way of conclusion (2)

In the Tractatus, Wittgenstein points out

All inference is made a priori (¤5.133)

TUP makes explicit the interplay between thea priori rules of a logical
setting and thea posteriorinormativity (Girard) of the untyped setting.

TUP as an interactional framework (execution and orthogonality have a
Òdialogical ßavorÓ)

From a philosophical point of view UPT can be seen as a useful analytical
tool which allows the comparison between di!erent approaches to the
meaning of logical constants:

! Dummett/Prawitz - Harmony for veriÞcationist/pragmatist theories
! Martin-Lšf - Curry-Howard and judgemental methods
! Brandom - Normativity and intentionality
! . . .
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